
International Journal of Theoretical Physics, Vol. 38, No. 8, 1999

Escape to Infinity
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This paper shows how solutions to the equations of Newtonian mechanics, which
become unbounded in a finite time, may be obtained for the case of rigid bodies
of an arbitrary size subject to mutual elastic collisions alone, without any
gravitational interaction. The absence of gravitation makes it possible to obtain
by a new procedure a sort of singularity similar to those found for the n-body
problem over the past 20 years.

The solutions found for the equations in dynamics which, for initial

conditions given at t0, become unbounded in a finite time are interesting for

at least two reasons: (a) they constitute cases of singular solutions, that is,

solutions defined analytically on some maximal interval [t0, t1), with t1 , ` ;
and (b) they lead to a peculiar form of nondeterministic evolution of dynamic

systems, since if limt ® t1 ) (qi (t) ) 5 1 ` , so that the system particles escape to

infinity in a finite time, the temporal inversion of this process entails the

unpredictable and spontaneous appearance of particles coming from spatial

infinity.

A solution which becomes unbounded in a finite time naturally requires
that the velocity (and therefore the kinetic energy) of the particles involved

also grows in an unbounded way in that time. Mather and McGehee (1975)

showed how this can happen by considering point particles subject to their

mutual gravitational interaction and likewise subject to elastic binary colli-

sions between some of them. More specifically, they used a system with four
point particles in unidimensional movement, and they fixed initial conditions

so that the distance ) ri 2 rj ) between two particular particles tended to zero

for t ® t1. In such a case their potential gravitatory energy of interaction 2
Gmimj / ) ri 2 rj ) tends to 2 ` for t ® t1 and, as the system is conservative,

1 Departamento de Logica y Filosofia de la Ciencia Universidad del Pais Vasco, 01006 Vitoria
Gasteiz, Spain.

2231

0020-7748/99/0800-223 1$16.00/0 q 1999 Plenum Publishing Corporation



2232 Laraudogoitia

the kinetic energy of the particles involved tends to 1 ` for t ® t1. In this

way they obtain the result that the particles disappear into spatial infinity by

t 5 t1. Based on the same idea, Gerver (1984) made a justified conjecture that
an unbounded solution would also be viable for a case with just gravitational

interaction and no collision. The proof, however, that his model with five

point particles, but this time in three-dimensional movement, leads to a

singularity was only obtained several years later by Xia (1992). In line with

these results, it is an interesting question whether solutions which become

unbounded in a finite time are also possible in the case of particles which
interact only through elastic collisions, in the absence of gravitation. In this

paper we will show that this is indeed so. Moreover, our demonstration is

interesting for another reason: it makes use of mathematical resources which

are completely different from the ones employed in their seminal works by

Mather and McGehee, Gerver, or Xia.

Since a solution which becomes unbounded in a finite time also requires
unbounded kinetic energy, and since in our nongravitational model of elastic

collisions all energy is kinetic and, in addition, it is preserved in every

collision, it is obvious that what will be required is a system of particles

whose initial kinetic energy is already infinite. If we make the (reasonable)

requirement that the mass and the velocity of a particle always be finite, the
preceding implies that we should start with an infinite set of particles each

of which has a finite kinetic energy. The key to the construction of an

unbounded solution will then lie in those particles reallocating the total

amount of energy available through elastic collisions between themselves,

so that the kinetic energy of each may grow unboundedly in a finite time.

This will be the way for the escape to infinity. Thus our model requires an
infinite number of particles, which is a theoretical idealization (needed to

have an unlimited source of kinetic energy), but it must be remembered that

the gravitational models of Mather and McGehee or Gerver and Xia require

strictly point particles (which is another idealization, needed to have available

an unlimited source of kinetic energy at the expense of the gravitational

field). As there is no gravitational field in our model, the particles may be
of any finite size whatsoever.

Consider an infinite set of rigid spheres e1, e2, e3, . . . all of them having

the same inertial mass m, but of arbitrary finite sizes, so that their respective

diameters are d1, d2, d3, . . . . Suppose that all of them have their geometrical

centers on the horizontal axis X and that at t 5 0 they are moving along it

in a positive direction in such a way that the velocity of ei is vi 5 v (ei) 5
i2, that ei 1 1 is situated to the left of ei , between ei and ei 1 2, and that the

distance between ei and ei 1 1 is d(ei , ei 1 1) 5 2 ? i (taking the distance between

two bodies A and B to be the smallest of the distances between a point in

A and a point in B). Given those conditions, it is known that, according to
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the conservation laws, every time a binary collision takes place the colliding

particles ei and ei 1 1 will exchange velocity. Thus, even though initially the

particle ej is the one with velocity vj 5 j2, later on this velocity can be
transmitted to different particles, so in general the expression ª the particle

having velocity vn 5 n2º will not always be used to refer to the same particle,

but it will refer to that particle which (at the relevant instant) travels at the

velocity indicated. Moreover, it is evident that

d(e1, en) 5 d(e1, e2) 1 d2 1 . . . 1 dn 2 1 1 d(en 2 1, en)

5 2 ? 1 1 d2 1 2 ? 2 1 . . . 1 dn 2 2 1 2(n 2 2) 1 dn 2 1 1 2(n 2 1)

5 2 F 1 1 (n 2 1)

2 G (n 2 1) 1 o
n 2 1

i 5 2
di

5 n2 2 n 1 o
n 2 1

i 5 2

di

Now, if we wished to determine, for example, at which instant after t 5 0

the particle having velocity vn 5 n2 will collide with the particle having

velocity v1 5 1, it is obvious that the distance to be considered at t 5 0 is
not the physical distance d(el , en), but a distance that we will henceforth call

the ª reduced distanceº d*(e1, en) 5 n2 2 n. This reflects precisely the fact

that intermediate collisions are instantaneous and that only an exchange of

velocities takes place in them, so that it is not necessary to ª coverº the space

occupied by the e2, e3, . . . , en 2 1, whose size is ( n 2 1
i 5 2 di. As d* (el , ei) 5 i2 2

i and d* (e1, ej) 5 j2 2 j, assuming that j . i, then

d* (ei , ej) 5 d*(el , ej) 2 d*(el , el)

5 j2 2 j 2 (i2 2 i)

5 ( j 2 i) ( j 1 i 2 1)

Finally, we will use the expression ª effective distance traveled by the

particle having velocity vº (in a certain interval of time D t) to refer to the

magnitude v ? D t, that is, the distance obtained without computing the changes

of location due only to the conversion of a particle having velocity v, e a ,

into a particle having velocity v, e b (with b 5 a 6 1). It is now easy to see

that after t 5 0 there will not be any multiple collisions in our model; all
the collisions will be binary. Indeed, since with j . i it holds that d*(ei , ej) 5
( j 2 i) ( j 1 i 2 1), the particle having velocity vi will collide with the

particle having velocity vj when the former has traveled (after t 5 0) an

effective distance h*ij such that
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h*ij

i2
5

( j 2 i) ( j 1 i 2 1) 1 h*ij

j2

(see Appendix), from which h*ij 5 i2( j 1 i 2 1)/( j 1 i). Similarly, with k 5
j 1 a . j . i ( a $ 1) it holds that d*(ei , ek) 5 (k 2 i)(k 1 i 2 1) and the

particle having velocity vi will collide with the particle having velocity vk

when the former has traveled (after t 5 0) an effective distance h*ik 5 i2(k 1
i 2 1)/(k 1 i). Under such conditions, if a multiple collision (in other words,

a simultaneous collision between more than two particles) took place, there

would be at least three positive integers i, j, k with i , j , k 5 j 1 a such

that h*ij 5 h*ik. But the condition h*ij 5 h*ik implies ( j 1 i 2 1)/( j 1 i) 5 (k 1
i 2 1)/(k 1 i), that is ( j 1 i 2 1)/( j 1 i) 5 ( j 1 i 2 1 1 a )/( j 1 i 1 a ),
which is impossible if, as is the case, a . 0. In our model we can conclude

that every collision between particles will be a binary collision.

Suppose that j . i. At t 5 0 the reduced distance between the particle

having velocity vi and the particle having velocity vj is d*(ei , ej) 5 ( j 2 i)
( j 1 i 2 1), given that at that instant the particle having velocity vi is still

ei and the particle having velocity vj is still ej. Since their relative velocity
is constant and equal to vj 2 vi 5 j2 2 i2, if by (i, j ) I denote the instant of

time at which the collision between the particle having velocity vi and the

particle having velocity vj takes place, it follows that

(i, j ) 5
( j 2 i) ( j 1 i 2 1)

( j2 2 i2)
5

j 1 i 2 1

j 1 i

Obviously, if i . j, once again one can obtain

(i, j ) 5
(i 2 j ) ( j 1 i 2 1)

(i2 2 j2)
5

j 1 i 2 1

j 1 i

Therefore, for any distinct positive integers i, j, (i, j ) 5 ( j 1 i 2 1)/( j 1
i). If k 5 j 1 a . j (with a a positive integer) (i, k) 5 (k 1 i 2 1)/(k 1 i)
5 ( j 1 i 2 1 1 a )/( j 1 i 1 a ) . ( j 1 i 2 1)/( j 1 i) 5 (i, j ). Therefore:

(I) For any distinct positive integers i, j, k with j , k, it holds that (i, j )
, (i, k), that is, the particle having velocity vi will collide with the particle

having velocity vj before it does with the one having velocity vk.

If by [i, j ] I denote the coordinates of the point on axis X at which the

collision between the particles having velocity vi and velocity vj takes place,

it follows straightaway from (I) and from the fact that all the particles are

moving toward the region of increasing X coordinates that:
(II) For any distinct positive integers i, j, k with j , k it holds that

[i, j ] , [i, k].

In essence, this is all that is needed to show that each one of our particles

ei will escape to infinity in a finite time. We shall consider the case of e1
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first. From (I) it follows that the sequence of instants of time at which e1

undergoes a collision is the infinite sequence

(S1) (1, 2) (2, 3) (3, 4) (4, 5) . . . (i, i 1 1) . . .

because at t 5 0, e1 is the particle having velocity v1 and it successively
becomes the particle having velocity v2, the particle having velocity v3, and

so on. [Note that at ( j, j 1 1), e1 becomes the particle having velocity vj 1 1,

and as ( j 1 1, k) # ( j 1 1, j ) for k # j, it follows that its next collision

will take place at ( j 1 1, j 1 2). Thus it becomes the particle having velocity

vj 1 2.] As

(i, i 1 1) 5
i 1 1 1 i 2 1

i 1 1 1 i
5

2i

2i 1 1
, lim

i ® `
(i, i 1 1) 5 1

this means that at t 5 1, e1 will already have undergone all of the collisions

in which it is involved (which, as we know, are infinite). Moreover, the

interval of time D i, i 1 1 between the ith collision and the (i 1 1)th collision
undergone by e1 has the value

D i, i 1 1 5
2(i 1 1)

2(i 1 1) 2 1
2

2i

2i 1 1
5

2

(2i 1 1)(2i 1 3)

In this interval e1 moves at velocity vi 1 1 5 (i 1 1)2, so the physical distance
covered by e1 in D i, i 1 1 is

Di 5
2(i 1 1)2

(2i 1 1)(2i 1 3)
5

2i2 1 4i 1 2

4i2 1 8i 1 3

Thus, the physical distance covered by e1 from the moment at which it
undergoes its first collision until t 5 1 is given by the series D1 1 D2 1
D3 1 . . . 5 limn ® ` ( n

m 5 1 Dm. Since its general term Dn 5 (2n2 1 4n 1 2)/

(4n2 1 8n 1 3) is such that limn ® ` Dn 5 1/2 Þ 0, it follows that the series

( `
n 5 1 Dn is not convergent. Since it is in addition a series of positive terms,

it follows that limn ® ` ( n
m 5 1 Dm 5 1 ` . This means that at t 5 1 the particle

e1 has escaped into spatial infinity, and it has done so as a result of its
successive collisions. Furthermore, as a consequence of this, and since by

(II) the sequence of spatial coordinates at which e1 undergoes a collision is

the infinite sequence (chronologically ordered)

(S2) [1, 2] [2, 3] [3, 4] [4, 5] . . . [i, i 1 1] . . .

we can also conclude that sequence (S2) is divergent, diverging to 1 ` .

Consider now the case of particle ek (k $ 2). From (I) it follows that

the sequence of instants of time at which ek undergoes a collision is the

infinite sequence
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(S3) (1, k) (1, k 1 1) (2, k 1 1) (2, k 1 2) (3, k 1 2)

(3, k 1 3) . . . (i, k 1 i 2 1) (i, k 1 i) . . .

since at t 5 0, ek is the particle having velocity vk and it becomes, successively,

the particle having velocity v1, the particle having velocity vk 1 1, the particle

having velocity v2, the particle having velocity vk 1 2, etc. Notice, indeed, that
in general at (i, k 1 i 2 1), ek becomes the particle having velocity vi. Since

for k # j, (i, k) # (i, j ), it follows that its next collision will take place at

(i, k 1 i). In this way, it becomes the particle having velocity vk 1 i. The

general term of (S3) is of the form (i, k 1 i 2 1) or of the form (i, k 1 i). As

lim
i ® `

(i, k 1 i 2 1) 5 lim
i ® `

k 1 i 2 1 1 i 2 1

k 1 i 2 1 1 i

5 lim
i ® `

2i 1 k 2 2

2i 1 k 2 1
5 1 5 lim

i ® `
(i, k 1 i)

5 lim
i ® `

k 1 i 1 i 2 1

k 1 i 1 i
5 lim

i ® `

2i 1 k 2 1

2i 1 k

we conclude that at t 5 1, ek will already have undergone all of the collisions
in which it is involved [and, given the infinite character of the sequence (S3),

we know there is an infinite number of them]. Furthermore, by (II), the

sequence of spatial coordinates at which ek undergoes a collision is the infinite

sequence (chronologically ordered)

(S4) [1, k] [1, k 1 1] [2, k 1 1] [2, k 1 2] [3, k 1 2]

[3, k 1 3] . . . [i, k 1 i 2 1] [i, k 1 i] . . .

Let us now compare sequences (S2) and (S4). We have seen that (S2) is

divergent, in the specific sense that limi ® ` [i, i 1 1] 5 1 ` , and for that

reason the following sequence of duplicates also diverges to 1 ` :

(S82) [1, 2] [1, 2] [2, 3] [2, 3] [3, 4] [3, 4] . . .

[i, i 1 1] [i, i 1 1] [i 1 1, i 1 2] . . .

A way to specify the general term of (S82) is the following: for n $ 1 the

(2n 2 1)th term of (S82) is [n, n 1 1] and the (2n)th is also [n, n 1 1]. A

way to specify the general term of (S4) is the following: for n $ 1 the

(2n 2 1)th term of (S4) is [n, k 1 n 2 1] and the (2n)th term is [n, k 1 n].

As k $ 2, from (II) it follows that for all n $ 1, [n, n 1 1] , [n, n 1 k] 5
[n, k 1 n] and also [n, n 1 1] # [n, n 1 k 2 1] 5 [n, k 1 n 2 1], namely,

the terms in the sequence (S4) are greater than or equal to the corresponding

terms in the sequence (S82). Since (S82) diverges to 1 ` , it automatically follows

that (S4) also diverges to 1 ` . This means that at t 5 1 particle ek will
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have escaped to spatial infinity, and will have done so as a result of its

successive collisions.

The above is enough to show that at t 5 1 all the particles e1, e2, e3,
. . . have disappeared into infinity and, consequently, that at t 5 1 a singularity

takes place. It can be wondered whether, in our problem of infinite bodies

evolving exclusively through elastic binary collisions, the set of initial condi-

tions leading to the existence of a singularity is sufficiently ª big,º in a

nontrivial sense (that is, in a sense that is independent of the mere possibility

of describing temporal evolution in a different inertial frame of reference).
Notice that our singularity was obtained solely from the following specifica-

tions: at t 5 0, d(ei , ei 1 1) 5 2 ? i and vi 5 v(ei) 5 i2. It becomes immediately

apparent that the deduction leading to its existence can be reproduced step

by step from new specifications so that there is a nonnumerable infinite set

of initial conditions leading to the existence of singularities (differing from

one another nontrivially) in the problem of infinite bodies subject to binary
elastic collisions only. The question of whether this set is of measure zero

or not remains open. The literature on singularities due to escape to infinity

does not have anything definitive to say on this matter either. Only for the

case of the planar four-body problem (four point particles under mutual

gravitational interaction moving on the same plane) is it known (Saari, 1977)
that the set of initial conditions which could potentially eventuate in a noncolli-

sion singularity has measure zero, but unfortunately, it is ignored whether in

this case there will or will not actually be a noncollision singularity. Anosov

(1985) suggested that the answer is positive, but offered no proof.

APPENDIX

The justification of the equation h*ij /i
2 5 [( j 2 i) ( j 1 i 2 1) 1

h*ij (1)/j2 is intuitively obvious, but it may be of some use to examine it in

more detail for a better understanding of the difference between real physical

displacement and effective distance traveled by the particle having velocity
v. At t 5 0 the physical distance between ei and ej is d(ei , ej) and the reduced

distance d*(ei , ej) 5 d(ei , ej) 2 ( j 2 1
l 5 i 1 1 dl (with the understanding that if i 5

j 2 1, then ( j 2 1
l 5 i 1 1 dl 5 0). When the particle having velocity vi and the

particle having velocity vj collide, the former will have performed a real

physical displacement hij (in a certain amount of time D t) from its position

at t 5 0 and will by then have become a certain particle eg. There are
three possibilities:

(a) g 5 i. The effective distance traveled by the particle having velocity

vi (in D t) will be vi ? D t 5 h*ij 5 hij. Therefore, from t 5 0 until the instant

it collides with the particle having velocity vi , the particle having velocity
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vj must perform a real physical displacement d(ei , ej) 1 hij and travel the

effective distance

vj ? D t 5 d(ei , ej) 1 hij 2 o
j 2 1

l 5 i 1 1

dl

5 d*(ei , ej) 1 hij

5 d*(ei , ej) 1 h*ij

5 ( j 2 i)( j 1 i 2 1) 1 h*ij

(b) g , i. The effective distance traveled by the particle having velocity

vi (in D t) will be vi ? D t 5 h*ij 5 hij 2 ( i 2 1
l 5 g 1 1 dl (with the understanding that

if g 5 i 2 1, then ( i 2 1
l 5 g 1 1 dl 5 0). Therefore, from t 5 0 until the instant it

collides with the particle having velocity vi , the particle having velocity vj

must perform a real physical displacement d(ei , ej) 1 di 1 hij and travel an

effective distance

vj ? D t 5 d(ei , ej) 1 dli 1 hij 2 o
j 2 1

l 5 g 1 1

dl

5 d(ei , ej) 2 o
j 2 1

l 5 i 1 1

dl 1 di 2 di 1 hij 2 o
i 2 1

l 5 g 1 1

dl

5 d*(ei , ej) 1 h*ij

5 ( j 2 i)( j 1 i 2 1) 1 h*ij

(c) g . i. The effective distance traveled by the particle having velocity

vi (in D t) will be vi ? D t 5 h*ij such that hij 5 vi ? D t 2 ( g 2 1
l 5 i 1 1 dl (again, if

i 5 g 2 1, we shall take it that ( g 2 1
l 5 i 1 1 dl 5 0). Notice that it could be the

case that vi ? D t , ( g 2 1
l 5 i 1 1 dl, that is, that the real physical displacement hij

performed by the particle having velocity vi is negative (in spite of the fact

that vi 5 i2 . 0). This is due to the fact that the particle having velocity vi

at t 5 0, namely ei , becomes, successively, ei 1 1, ei 1 2, . . . , eg 2 1, eg during

the interval of time D t. Nonetheless, h*ij is always positive and has the value

h*ij 5 vi ? D t 5 hij 1 ( g 2 1
l 5 i 1 1 dl. From t 5 0 until the instant that it collides

with the particle having velocity vi , the particle having velocity vj must
perform a real physical displacement d(ei , ej) 1 hij and travel the effective

distance

vj ? D t 5 d (ei , ej) 1 hij 2 dg 2 o
j 2 1

l 5 g 1 1

dl

5 d(ei , ej) 1 h*ij 2 o
g 2 1

l 5 i 1 1

dl 2 dg 2 o
j 2 1

l 5 g 1 1

dl
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5 d(ei , ej) 2 o
j 2 1

l 5 i 1 1

dl 1 h*ij

5 d*(ei , ej) 1 h*ij

5 ( j 2 i)( j 1 i 2 1) 1 h*ij

Therefore, during the interval D t between t 5 0 and the time at which the

particle having velocity vi collides with the particle having velocity vj , the

former has traveled an effective distance h*ij 5 vi ? D t and the latter an effec-

tive distance ( j 2 i)( j 1 i 2 1) 1 h*ij 5 vj ? D t. From these two equations

we obtain the result h*ij /vi 5 [( j 2 i)( j 1 i 2 1) 1 h*ij ]/vj, and as vi 5 i2 and

vj 5 j2 the equation that is the object of this appendix is proved.
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